Climate engineering
Climate engineering (or geoengineering, climate intervention[1]) is the intentional large-scale alteration of the planetary environment to counteract anthropogenic climate change.[2][3] The term has been used as an umbrella term for carbon dioxide removal, weather as a weapon, reduction of pole ice and solar radiation modification when applied at a planetary scale.[4]: 168 However, these two processes have very different characteristics, and are now often discussed separately.[4]: 168 [5] Carbon dioxide removal techniques remove carbon dioxide from the atmosphere, and are part of climate change mitigation. Solar radiation modification is the reflection of some sunlight (solar radiation) back to space to cool the earth.[6] Some publications include passive radiative cooling as a climate engineering technology. The media tends to also use climate engineering for other technologies such as glacier stabilization, ocean liming, and iron fertilization of oceans. The latter would modify carbon sequestration processes that take place in oceans.
Some types of climate engineering are highly controversial due to the large uncertainties around effectiveness, side effects and unforeseen consequences.[7] Interventions at large scale run a greater risk of unintended disruptions of natural systems, resulting in a dilemma that such disruptions might be more damaging than the climate damage that they offset.[8] However, the risks of such interventions must be seen in the context of the trajectory of climate change without them.[9][8][10]
Terminology
[edit]Climate engineering (or geoengineering) has been used as an umbrella term for both carbon dioxide removal and solar radiation management, when applied at a planetary scale.[4]: 168 However, these two methods have very different geophysical characteristics, which is why the Intergovernmental Panel on Climate Change no longer uses this term.[4]: 168 [5] This decision was communicated in around 2018, see for example the Special Report on Global Warming of 1.5 °C.[11]: 550
According to climate economist Gernot Wagner the term geoengineering is "largely an artefact and a result of the term's frequent use in popular discourse" and "so vague and all-encompassing as to have lost much meaning".[7]: 14
Specific technologies that fall into the climate engineering umbrella term include:[12]: 30
- Carbon dioxide removal
- Biochar: Biochar is a high-carbon, fine-grained residue that is produced via pyrolysis[13]
- Bioenergy with carbon capture and storage (BECCS): the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere.[14]
- Direct air capture and carbon storage: a process of capturing carbon dioxide directly from the ambient air (as opposed to capturing from point sources, such as a cement factory or biomass power plant) and generating a concentrated stream of CO2 for sequestration or utilization or production of carbon-neutral fuel and windgas.
- Enhanced weathering: a process that aims to accelerate the natural weathering by spreading finely ground silicate rock, such as basalt, onto surfaces which speeds up chemical reactions between rocks, water, and air. It also removes carbon dioxide (CO2) from the atmosphere, permanently storing it in solid carbonate minerals or ocean alkalinity.[15] The latter also slows ocean acidification.
- Solar Radiation Management
- Marine cloud brightening: a proposed technique that would make clouds brighter, reflecting a small fraction of incoming sunlight back into space in order to offset anthropogenic global warming.[16]
- Mirrors in space (MIS): satellites that are designed to change the amount of solar radiation that impacts the Earth as a form of climate engineering. Since the conception of the idea in 1923, 1929, 1957 and 1978 (Hermann Oberth) and also in the 1980s, space mirrors have mainly been theorized as a way to deflect sunlight to counter global warming and were seriously considered in the 2000s.[17][18][19][20][21][22]
- Stratospheric aerosol injection (SAI): a proposed method to introduce aerosols into the stratosphere to create a cooling effect via global dimming and increased albedo, which occurs naturally from volcanic eruptions.[23]
The following methods are not termed climate engineering in the latest IPCC assessment report in 2022[4]: 6–11 but are included under this umbrella term by other publications on this topic:[24][7]
- Passive daytime radiative cooling: technology that increases the Earth's solar reflectance and thermal emittance in the atmospheric window.[25][26][27]
- Ground-level albedo modification: increasing Earth's albedo by modifying objects on the Earth's surface. Examples include planting light-colored plants to help with reflecting sunlight back into space.[28]
- Glacier stabilization: interventions to slow down or prevent sea level rise caused by the collapse of notable marine-terminating glaciers, such as Jakobshavn Glacier in Greenland or Thwaites Glacier and Pine Island Glacier in Antarctica. It may be possible to bolster some glaciers directly,[29] but blocking the flow of ever-warming ocean water at a distance, allowing it more time to mix with the cooler water around the glacier, is likely to be far more effective.[30][31][32]
- Ocean geoengineering[33] (adding material such as lime or iron to the ocean to affect its ability to sequester carbon dioxide).
Methods
[edit]Carbon dioxide removal
[edit]
Carbon dioxide removal (CDR) is a process in which carbon dioxide (CO2) is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products.[36]: 2221 This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies.[37][38] Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR ("CDR is what puts the net into net zero emissions" [39]). In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.[40]: 114
CDR includes methods that are implemented on land or in aquatic systems. Land-based methods include afforestation, reforestation, agricultural practices that sequester carbon in soils (carbon farming), bioenergy with carbon capture and storage (BECCS), and direct air capture combined with storage.[40][41] There are also CDR methods that use oceans and other water bodies. Those are called ocean fertilization, ocean alkalinity enhancement,[42] wetland restoration and blue carbon approaches.[40] A detailed analysis needs to be performed to assess how much negative emissions a particular process achieves. This analysis includes life cycle analysis and "monitoring, reporting, and verification" (MRV) of the entire process.[43] Carbon capture and storage (CCS) are not regarded as CDR because CCS does not reduce the amount of carbon dioxide already in the atmosphere.Solar radiation modification
[edit]
Solar radiation modification (SRM) (or solar geoengineering or solar radiation management), is a group of large-scale approaches to reduce global warming by increasing the amount of sunlight (solar radiation) that is reflected away from Earth and back to space. Among the potential methods, stratospheric aerosol injection (SAI) is the most-studied,[44]: 350 followed by marine cloud brightening (MCB); others such as ground- and space-based methods show less potential or feasibility and receive less attention. SRM could be a supplement to climate change mitigation and adaptation measures,[45]: 1489 but would not be a substitute for reducing greenhouse gas emissions.[46] SRM is a form of climate engineering or geoengineering, and might be able to prevent some kinds of tipping.[47]
Scientific studies, based on evidence from climate models, have consistently shown that SRM could reduce global warming and many effects of climate change.[48][49][50] However, because warming from greenhouse gases and cooling from SRM would operate differently across latitudes and seasons, a world where global warming would be reduced by SRM would have a different climate from one where this warming did not occur in the first place. SRM would therefore pose environmental risks, as would a warmed world without SRM. Confidence in the current projections of how SRM would affect regional climate and ecosystems is low.[45]: 1491–1492Glacial geoengineering
[edit]
Glacial geoengineering is a set of proposed geoengineering that focus on slowing the loss of glaciers, ice sheets, and sea ice in polar regions and, in some cases, alpine areas. Proposals are motivated by concerns that feedback loops—such as ice-albedo loss, accelerated glacier flow, and permafrost methane release—could amplify climate change and trigger climate tipping points.[51][52]
Proposed glacial geoengineering methods include regional or local solar radiation management, thinning cirrus clouds to allow more heat to escape, and deploying mechanical or engineering structures to stabilize ice. Specific strategies under investigation are stratospheric aerosol injection focused on polar regions,[53] marine cloud brightening,[54] surface albedo modification with reflective materials,[55] basal interventions such as draining subglacial water or promoting basal freezing,[52] and ice shelf protection measures including seabed curtains.[56]
Glacial geoengineering is in the early research stage and many proposals face major technical, environmental, and governance challenges.[54] Supporters argue that targeted interventions could help stabilize ice sheets, slow sea-level rise, and reduce the risk of passing irreversible thresholds in the climate system. At the same time, experts caution that the effectiveness of these methods remains highly uncertain and that interventions could produce unintended side effects.[52] Glacial geoengineering is generally considered a possible complement to, not a replacement for, efforts to reduce greenhouse gas emissions.[53][54]Governance
[edit]Most governance issues relating geoengineering are specific to the category or the specific method. Nevertheless, a couple of governance instruments have addressed geoengineering collectively.
The Conference of Parties to the Convention on Biological Diversity have made several decisions regarding "climate related geoengineering." That of 2010 established "a comprehensive non-binding normative framework"[57]: 106 for "climate-related geoengineering activities that may affect biodiversity," requesting that such activities be justified by the need to gather specific scientific data, undergo prior environmental assessment, be subject to effective regulatory oversight.[58]: 96–97 [59]: 161–162 The Parties' 2016 decision called for "more transdisciplinary research and sharing of knowledge... in order to better understand the impacts of climate-related geoengineering."[59]: 161-162 [60]
Society and culture
[edit]Public perception
[edit]A large 2018 study used an online survey to investigate public perceptions of six climate engineering methods in the United States, United Kingdom, Australia, and New Zealand.[12] Public awareness of climate engineering was low; less than a fifth of respondents reported prior knowledge. Perceptions of the six climate engineering methods proposed (three from the carbon dioxide removal group and three from the solar radiation modification group) were largely negative and frequently associated with attributes like 'risky', 'artificial' and 'unknown effects'. Carbon dioxide removal methods were preferred over solar radiation modification. Public perceptions were remarkably stable with only minor differences between the different countries in the surveys.[12][61]
Some environmental organizations (such as Friends of the Earth and Greenpeace) have been reluctant to endorse or oppose solar radiation modification, but are often more supportive of nature-based carbon dioxide removal projects, such as afforestation and peatland restoration.[62][63]
Research and projects
[edit]Several organizations have investigated climate engineering with a view to evaluating its potential, including the US Congress,[64] the US National Academy of Sciences, Engineering, and Medicine,[65] the Royal Society,[66] the UK Parliament,[67] the Institution of Mechanical Engineers,[68] and the Intergovernmental Panel on Climate Change.
In 2009, the Royal Society in the UK reviewed a wide range of proposed climate engineering methods and evaluated them in terms of effectiveness, affordability, timeliness, and safety (assigning qualitative estimates in each assessment). The key recommendations reports were that "Parties to the UNFCCC should make increased efforts towards mitigating and adapting to climate change, and in particular to agreeing to global emissions reductions", and that "[nothing] now known about geoengineering options gives any reason to diminish these efforts".[69] Nonetheless, the report also recommended that "research and development of climate engineering options should be undertaken to investigate whether low-risk methods can be made available if it becomes necessary to reduce the rate of warming this century".[69]
In 2009, a review examined the scientific plausibility of proposed methods rather than the practical considerations such as engineering feasibility or economic cost. The authors found that "[air] capture and storage shows the greatest potential, combined with afforestation, reforestation and bio-char production", and noted that "other suggestions that have received considerable media attention, in particular, "ocean pipes" appear to be ineffective".[70] They concluded that "[climate] geoengineering is best considered as a potential complement to the mitigation of CO2 emissions, rather than as an alternative to it".[70]
The IMechE report examined a small subset of proposed methods (air capture, urban albedo and algal-based CO2 capture techniques), and its main conclusions in 2011 were that climate engineering should be researched and trialed at the small scale alongside a wider decarbonization of the economy.[68]
In 2015, the US National Academy of Sciences, Engineering, and Medicine concluded a 21-month project to study the potential impacts, benefits, and costs of climate engineering. The differences between these two classes of climate engineering "led the committee to evaluate the two types of approaches separately in companion reports, a distinction it hopes carries over to future scientific and policy discussions."[71][72][73] The resulting study titled Climate Intervention was released in February 2015 and consists of two volumes: Reflecting Sunlight to Cool Earth[74] and Carbon Dioxide Removal and Reliable Sequestration.[75]
In June 2023 the US government released a report that recommended conducting research on stratospheric aerosol injection and marine cloud brightening.[76]
As of 2024 the Coastal Atmospheric Aerosol Research and Engagement (CAARE) project was launching sea salt into the marine sky in an effort to increase cloud "brightness" (reflective capacity). The sea salt is launched from the USS Hornet Sea, Air & Space Museum (based on the project's regulatory filings).[77]
See also
[edit]References
[edit]- ^ "Research to Inform Decisions about Climate Intervention". www.wcrp-climate.org. Retrieved 2024-12-10.
- ^ Shepherd, John (2009). Geoengineering the climate: science, governance and uncertainty. Royal Society of London. p. 1. ISBN 978-0-85403-773-5. Retrieved 2024-10-28.
- ^ Union of Concerned Scientists (6 November 2017). "What is Climate Engineering?". www.ucsusa.org. Retrieved 2024-10-28.
- ^ a b c d e IPCC (2022) Chapter 1: Introduction and Framing in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ^ a b IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
- ^ National Academies of Sciences Engineering Medicine (2021-03-25). Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. doi:10.17226/25762. ISBN 978-0-309-67605-2. S2CID 234327299. Archived from the original on 2021-04-17. Retrieved 2021-04-17.
- ^ a b c Gernot Wagner (2021). Geoengineering: the Gamble.
- ^ a b Matthias Honegger; Axel Michaelowa; Sonja Butzengeiger-Geyer (2012). Climate Engineering – Avoiding Pandora's Box through Research and Governance (PDF). FNI Climate Policy Perspectives. Fridtjof Nansen Institute (FNI), Perspectives. Archived from the original (PDF) on 2015-09-06. Retrieved 2018-10-09.
- ^ Trakimavicius, Lukas. "Playing God with climate: the EU's geoengineering conundrum". EUISS.
- ^ Zahra Hirji (October 6, 2016). "Removing CO2 From the Air Only Hope for Fixing Climate Change, New Study Says; Without 'negative emissions' to help return atmospheric CO2 to 350 ppm, future generations could face costs that 'may become too heavy to bear,' paper says". insideclimatenews.org. InsideClimate News. Archived from the original on November 17, 2019. Retrieved October 7, 2016.
- ^ Global Warming of 1.5°C: IPCC Special Report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty (1 ed.). Cambridge University Press. 2022. doi:10.1017/9781009157940.008. ISBN 978-1-009-15794-0.
- ^ a b c Carlisle, Daniel P.; Feetham, Pamela M.; Wright, Malcolm J.; Teagle, Damon A. H. (2020-04-12). "The public remain uninformed and wary of climate engineering" (PDF). Climatic Change. 160 (2): 303–322. Bibcode:2020ClCh..160..303C. doi:10.1007/s10584-020-02706-5. ISSN 1573-1480. S2CID 215731777. Archived (PDF) from the original on 2021-06-14. Retrieved 2021-05-18.
- ^ Dominic Woolf; James E. Amonette; F. Alayne Street-Perrott; Johannes Lehmann; Stephen Joseph (August 2010). "Sustainable biochar to mitigate global climate change". Nature Communications. 1 (5): 56. Bibcode:2010NatCo...1...56W. doi:10.1038/ncomms1053. ISSN 2041-1723. PMC 2964457. PMID 20975722.
- ^ Obersteiner, M. (2001). "Managing Climate Risk". Science. 294 (5543): 786–7. doi:10.1126/science.294.5543.786b. PMID 11681318. S2CID 34722068.
- ^ "Guest post: How 'enhanced weathering' could slow climate change and boost crop yields". Carbon Brief. 2018-02-19. Archived from the original on 2021-09-08. Retrieved 2021-11-03.
- ^ Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts; Board on Atmospheric Sciences and Climate; Ocean Studies Board; Division on Earth and Life Studies; National Research Council (2015). Climate Intervention: Reflecting Sunlight to Cool Earth. National Academies Press. ISBN 978-0-309-31482-4. Archived from the original on 2019-12-14. Retrieved 2016-10-21.
- ^ Oberth, Hermann (1984) [1923]. Die Rakete zu den Planetenräumen (in German). Michaels-Verlag Germany. pp. 87–88.
- ^ Oberth, Hermann (1970) [1929]. ways to spaceflight. NASA. pp. 177–506. Retrieved 21 December 2017 – via archiv.org.
- ^ Oberth, Hermann (1957). Menschen im Weltraum (in German). Econ Duesseldorf Germany. pp. 125–182.
- ^ Oberth, Hermann (1978). Der Weltraumspiegel (in German). Kriterion Bucharest.
- ^ Kaufman, Rachel (August 8, 2012). "Could Space Mirrors Stop Global Warming?". Live Science. Retrieved 2019-11-08.
- ^ Sánchez, Joan-Pau; McInnes, Colin R. (2015-08-26). "Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point". PLOS ONE. 10 (8): e0136648. Bibcode:2015PLoSO..1036648S. doi:10.1371/journal.pone.0136648. ISSN 1932-6203. PMC 4550401. PMID 26309047.
- ^ Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3–4): 211–220. Bibcode:2006ClCh...77..211C. doi:10.1007/s10584-006-9101-y.
- ^ "Chapter 2 : Land–Climate interactions: Special Report on Climate Change and Land". Retrieved 2023-10-20.
- ^ Zevenhovena, Ron; Fält, Martin (June 2018). "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach". Energy. 152: 27. Bibcode:2018Ene...152...27Z. doi:10.1016/j.energy.2018.03.084 – via Elsevier Science Direct.
An alternative, third geoengineering approach would be enhanced cooling by thermal radiation from the Earth's surface into space.
- ^ Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021). "A structural polymer for highly efficient all-day passive radiative cooling". Nature Communications. 12 (365): 365. doi:10.1038/s41467-020-20646-7. PMC 7809060. PMID 33446648.
One possibly alternative approach is passive radiative cooling—a sky-facing surface on the Earth spontaneously cools by radiating heat to the ultracold outer space through the atmosphere's longwave infrared (LWIR) transparency window (λ ~ 8–13 μm).
- ^ Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). "Passive daytime radiative cooling: Fundamentals, material designs, and applications". EcoMat. 4. doi:10.1002/eom2.12153. S2CID 240331557.
Passive daytime radiative cooling dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming.
- ^ Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A. (2017-07-01). "Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product". International Journal of Applied Earth Observation and Geoinformation. 59: 104–117. Bibcode:2017IJAEO..59..104W. doi:10.1016/j.jag.2017.03.008. ISSN 1569-8432. PMC 7641169. PMID 33154713.
- ^ Wolovick, Michael J.; Moore, John C. (20 September 2018). "Stopping the flood: could we use targeted geoengineering to mitigate sea level rise?". The Cryosphere. 12 (9): 2955–2967. Bibcode:2018TCry...12.2955W. doi:10.5194/tc-12-2955-2018.
- ^ Wolovick, Michael; Moore, John; Keefer, Bowie (27 March 2023). "Feasibility of ice sheet conservation using seabed anchored curtains". PNAS Nexus. 2 (3): pgad053. doi:10.1093/pnasnexus/pgad053. PMC 10062297. PMID 37007716.
- ^ Wolovick, Michael; Moore, John; Keefer, Bowie (27 March 2023). "The potential for stabilizing Amundsen Sea glaciers via underwater curtains". PNAS Nexus. 2 (4): pgad103. doi:10.1093/pnasnexus/pgad103. PMC 10118300. PMID 37091546.
- ^ "The radical intervention that might save the "doomsday" glacier". MIT Technology Review. Retrieved 2022-01-14.
- ^ Voosen, Paul (16 December 2022). "Ocean geoengineering scheme aces its first field test". www.science.org. Retrieved 2022-12-19.
- ^ Buis, Alan (November 7, 2019). "Examining the Viability of Planting Trees to Help Mitigate Climate Change". Climate Change: Vital Signs of the Planet. Retrieved 2023-04-13.
- ^ Marshall, Michael (26 May 2020). "Planting trees doesn't always help with climate change". BBC. Retrieved 2023-04-13.
- ^ IPCC, 2021: "Annex VII: Glossary". Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.). In "Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change". Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022
- ^ Schenuit, Felix; Colvin, Rebecca; Fridahl, Mathias; McMullin, Barry; Reisinger, Andy; Sanchez, Daniel L.; Smith, Stephen M.; Torvanger, Asbjørn; Wreford, Anita; Geden, Oliver (2021-03-04). "Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases". Frontiers in Climate. 3: 638805. doi:10.3389/fclim.2021.638805. hdl:1885/270309. ISSN 2624-9553.
- ^ Geden, Oliver (May 2016). "An actionable climate target". Nature Geoscience. 9 (5): 340–342. Bibcode:2016NatGe...9..340G. doi:10.1038/ngeo2699. ISSN 1752-0908. Archived from the original on May 25, 2021. Retrieved March 7, 2021.
- ^ Ho, David T. (2023-04-04). "Carbon dioxide removal is not a current climate solution — we need to change the narrative". Nature. 616 (7955): 9. Bibcode:2023Natur.616....9H. doi:10.1038/d41586-023-00953-x. ISSN 0028-0836. PMID 37016122. S2CID 257915220.
- ^ a b c M. Pathak, R. Slade, P.R. Shukla, J. Skea, R. Pichs-Madruga, D. Ürge-Vorsatz,2022: Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.002.
- ^ Rackley, Steve; Andrews, Graham; Clery, Diarmaid; De Richter, Renaud; Dowson, George; Knops, Pol; Li, We; Mccord, Stephen; Ming, Tingzhen; Sewel, Adrienne; Styring, Peter; Tyka, Michael (2023). Negative Emissions Technologies for Climate Change Mitigation. Elsevier. ISBN 978-0-12-819663-2.
- ^ Lebling, Katie; Northrop, Eliza; McCormick, Colin; Bridgwater, Liz (November 15, 2022), "Toward Responsible and Informed Ocean-Based Carbon Dioxide Removal: Research and Governance Priorities" (PDF), World Resources Institute: 11, doi:10.46830/wrirpt.21.00090, S2CID 253561039
- ^ Schenuit, Felix; Gidden, Matthew J.; Boettcher, Miranda; Brutschin, Elina; Fyson, Claire; Gasser, Thomas; Geden, Oliver; Lamb, William F.; Mace, M. J.; Minx, Jan; Riahi, Keywan (2023-10-03). "Secure robust carbon dioxide removal policy through credible certification". Communications Earth & Environment. 4 (1): 349. Bibcode:2023ComEE...4..349S. doi:10.1038/s43247-023-01014-x. ISSN 2662-4435.
- ^ Ipcc (2022-06-09). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (1 ed.). Cambridge University Press. doi:10.1017/9781009157940.006. ISBN 978-1-009-15794-0.
- ^ a b Intergovernmental Panel on Climate Change (2021). Climate Change 2021: Mitigation of Climate Change – Working Group III Contribution.
- ^ Helwegen, Koen G.; Wieners, Claudia E.; Frank, Jason E.; Dijkstra, Henk A. (2019-07-15). "Complementing CO2 emission reduction by solar radiation management might strongly enhance future welfare". Earth System Dynamics. 10 (3): 453–472. doi:10.5194/esd-10-453-2019. ISSN 2190-4979.
even if successful, SRM can not replace but only complement CO2 abatement.
- ^ Futerman, Gideon; Adhikari, Mira; Duffey, Alistair; Fan, Yuanchao; Irvine, Peter; Gurevitch, Jessica; Wieners, Claudia (2023-10-10). "The interaction of Solar Radiation Modification and Earth System Tipping Elements". EGUsphere: 1–70. doi:10.5194/egusphere-2023-1753.
- ^ Intergovernmental Panel on Climate Change (2021). Climate Change 2021: The Physical Science Basis – Working Group I Contribution to the Sixth Assessment Report of the IPCC. Cambridge University Press.
- ^ "One Atmosphere: An Independent Expert Review on Solar Radiation Modification Research and Deployment". UN Environment Programme. 2023. Retrieved 2024-03-09.
- ^ World Meteorological Organization (2022). Scientific Assessment of Ozone Depletion 2022. World Meteorological Organization.
- ^ "As the Arctic sea ice melts, be wary of 'Methane Emergency' claims". CarbonBrief. 14 August 2012.
- ^ a b c Minunno, R.; Andersson, N.; Morrison, G.M. (18 April 2023). "A systematic literature review considering the implementation of planetary geoengineering techniques for the mitigation of sea-level rise". Earth-Science Reviews. 241: 104431. doi:10.1016/j.earscirev.2023.104431.
- ^ a b Cite error: The named reference
Glacial geoengineering :1
was invoked but never defined (see the help page). - ^ a b c Wang, Feiteng; Xie, Yida; Wang, Lin; Liu, Shuangshuang; Jin, Xiang (15 January 2025). "Mitigating ice sheets and mountain glaciers melt with geoengineering". Science of The Total Environment. 963: 178450. doi:10.1016/j.scitotenv.2025.178450.
- ^ "Thawing Permafrost Could Leach Microbes, Chemicals Into Environment". Jet Propulsion Laboratory. 9 March 2022.
- ^ Gertner, Jon (2024-01-06). "Can $500 Million Save This Glacier?". The New York Times. ISSN 0362-4331. Archived from the original on 9 Jan 2024. Retrieved 2025-04-27.
- ^ Geoengineering in relation to the Convention on Biological Diversity. CBD technical series. Montreal: Secretariat of the Convention on Biological Diversity. 2012. ISBN 978-92-9225-429-2.
- ^ National Academies of Sciences, Engineering (2021-03-25). Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. doi:10.17226/25762. ISBN 978-0-309-67605-2. Archived from the original on 2021-04-17. Retrieved 2021-04-17.
- ^ a b Scientific Advice Mechanism to the European Commission (2024-12-09). Solar radiation modification: evidence review report (Report). SAPEA. doi:10.5281/zenodo.14283096.
- ^ Convention on Biological Diversity, Conference of the Parties to the (8 December 2016). Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity, XIII/14. Climate-related Geoengineering (PDF).
{{cite book}}
: CS1 maint: date and year (link) - ^ Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M. (February 2014). "A quantitative evaluation of the public response to climate engineering". Nature Climate Change. 4 (2): 106–110. Bibcode:2014NatCC...4..106W. doi:10.1038/nclimate2087. ISSN 1758-6798. Archived from the original on 2020-07-28. Retrieved 2020-05-22.
- ^ Adam, David (1 September 2008). "Extreme and risky action the only way to tackle global warming, say scientists". The Guardian. Archived from the original on 2019-08-06. Retrieved 2009-05-23.
- ^ Parr, Doug (1 September 2008). "Geo-engineering is no solution to climate change". Guardian Newspaper. London. Archived from the original on 2018-08-20. Retrieved 2009-05-23.
- ^ Bullis, Kevin (6 November 2009). "U.S. Congress Considers Geoengineering". MIT Technology Review. Archived from the original on 26 January 2013. Retrieved 26 December 2012.
- ^ "Climate Intervention Reports » Climate Change at the National Academies of Sciences, Engineering, and Medicine". nas-sites.org. Archived from the original on 2016-07-29. Retrieved 2015-11-02.
- ^ "Stop emitting CO2 or geoengineering could be our only hope" (Press release). The Royal Society. 28 August 2009. Archived from the original on 24 June 2011. Retrieved 14 June 2011.
- ^ "Geo-engineering research" (PDF). Postnote. Parliamentary Office of Science and Technology. March 2009. Retrieved 2022-09-11.
- ^ a b "Geo-engineering – Giving us the time to act?". I Mech E. Archived from the original on 2011-07-22. Retrieved 2011-03-12.
- ^ a b Working group (2009). Geoengineering the Climate: Science, Governance and Uncertainty (PDF) (Report). London: The Royal Society. p. 1. ISBN 978-0-85403-773-5. RS1636. Archived (PDF) from the original on 2014-03-12. Retrieved 2011-12-01.
- ^ a b Lenton, T.M.; Vaughan, N.E. (2009). "The radiative forcing potential of different climate geoengineering options". Atmospheric Chemistry and Physics. 9 (15): 5539–5561. Bibcode:2009ACP.....9.5539L. doi:10.5194/acp-9-5539-2009. Archived from the original on 2019-12-14. Retrieved 2009-09-04.
- ^ "Climate Intervention Is Not a Replacement for Reducing Carbon Emissions; Proposed Intervention Techniques Not Ready for Wide-Scale Deployment". NEWS from the national academies (Press release). Feb 10, 2015. Archived from the original on 2015-11-17. Retrieved 2015-11-24.
- ^ National Research Council (2017). Climate Intervention: Reflecting Sunlight to Cool Earth. The National Academies Press. doi:10.17226/18988. ISBN 978-0-309-31482-4. Ebook: ISBN 978-0-309-31485-5.
- ^ National Research Council (2015). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. doi:10.17226/18805. ISBN 978-0-309-30529-7. Archived from the original on 2018-08-21. Retrieved 2018-08-20.
- ^ National Research Council (2015). Climate Intervention: Reflecting Sunlight to Cool Earth. National Academies Press. ISBN 978-0-309-31482-4. Archived from the original on 2019-12-14. Retrieved 2018-08-20.
- ^ National Research Council (2015). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. National Academies Press. ISBN 978-0-309-30529-7. Archived from the original on 2018-08-21. Retrieved 2018-08-20.
- ^ Hanley, Steve (2023-07-03). "US & EU Quietly Begin To Discuss Geoengineering". CleanTechnica. Retrieved 2023-07-06.
- ^ "Marine Cloud Brightening Program studies clouds, aerosols and pathways to reduce climate risks". College of the Environment. Retrieved 2024-04-08.